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A model inviscid and incompressible flow problem is studied in which an infinite 
array of equi-spaced identical rectilinear line vortices moves in a uniform stream over 
a wall in which is embedded an equi-spaced array of discrete line sources of variable 
strength. It is shown that for a suitable choice of source spacing and strength, a flow 
that is periodic both in time and in the streamwise direction is possible. The flow is 
shown to be stable to small two-dimensional disturbances for a range of values of 
vortex height above the wall and source strength. The implications for the 
corresponding viscous problem and active flow control are discussed. 

1. Introduction 
Active control of flow over a surface of a body has been a topic of recent interest : 

this will generally entail the processes of flow manipulation, pressure monitoring on 
the body surface and introduction of corrective measures involving, for example, 
fluid injection and suction through slots on the surface. The flow manipulation may 
result in structured, somewhat predictive, flow whose effects a t  the surface may be 
easier to identify and hence control. However, we expect that  the corrective 
measures in themselves will not only significantly influence the motion of the 
structured flow but also induce fairly complex secondary flows in the boundary layer. 
I n  this paper we consider a canonical inviscid and incompressible problem which 
involves motion of primary flow structures, organized in the form of an array of 
spanwise vortices, over a plane rigid surface. For the inviscid problem, the secondary 
flows are necessarily absent and we examine the effect of a particular type of 
corrective measure on the motion of the primary flow structures. The problem serves 
to identify the type of outer ‘potential’ flow which can arise in the corresponding 
viscous problem and which can induce possible development of secondary flow in the 
boundary layer on the plane surface. 

Thus we consider the motion and stability of an infinite array of equally spaced, 
identical vortices in a uniform free-stream flow of an inviscid and incompressible 
fluid over a plane rigid surface which is embedded with a discrete distribution of line 
sources whose strengths vary periodically both in time and position along the rigid 
surface. The vortices are reprcsented by rectilinear line vortices. 

I n  the absence of the embedded soumes, the line vortices convect steadily with a 
speed 

(Lamb 1932, pp. 225-228), where K is the strength of the vortices, A is the 
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streamwise spacing, y, is the height of the array above the wall and U, is the uniform 
free-stream speed. The model flow implies a slip speed of U,,+K/A a t  the rigid 
surface. The array is, however, unstable to small two-dimensional disturbances, the 
‘pairing’ mode being the most unstable. In  this paper we consider the effect of the 
embedded sources on such an array. 

The equations for the model flow are derived in $2, and the basic features of the 
motion are investigated in $3. It is shown that flows which are periodic both spatially 
and temporally are possible if the time dependence of the strength of the embedded 
sources is suitably chosen. In  $4, the stability of these periodic flows to infinitesimal 
two-dimensional disturbances is investigated. It is shown that stable flows are 
possible for a range of vortex heights above the surface provided that the source 
strength is suitably pulsed. It is noted that in practice the disturbances may not be 
small or two-dimensional and it would be necessary to investigate stability to finite 
three-dimensional disturbances. However, the present stability investigation is a 
prerequisite for any such consideration. 

In the corresponding viscous problem, the vortices in the array may be primary 
flow structures generated through flow separation, by periodic forcing at a backward- 
facing spanwise step, for example, at  a far upstream location. In  this case, the 
solution obtained here may be regarded as the outer ‘potential’ flow solution for the 
viscous boundary layer on the surface. The boundary-layer response to such a 
potential flow can, in general, be significant. For example, the development of the 
boundary layer due to the passage of a single spanwise vortex of arbitrary strength 
over a plane rigid surface leads to production of secondary eddies a t  the surface 
(Walker 1978). Similar viscous response to coherent eddies is observed in a turbulent 
boundary layer (see for example, Smith et al. 1991 ; Falco 1991). In  an inviscid model 
of the kind considered here, any such influence a t  the wall is characterized by the slip 
velocity induced at  the surface. These characteristics and their implications are 
considered in $3. It is believed that in the present case, if the induced mean slip 
velocity is made null through a suitable choice of vortex strength and/or spacing for 
a given free-stream speed, such an influence may be considerably reduced; the 
characteristics of the flow in the corresponding viscous problem being significantly 
different in this case from that of a conventional structured boundary layer. The 
exact determination of the viscous response will require further investigation. 

2. Equations of motion 
In this section we obtain the equations which govern the motion of an array of 

point vortices in an inviscid fluid over a plane wall which is embedded with a discrete 
distribution of line sources. 

We consider the two-dimensional flow in the upper half of (x, y)-plane with the line 
sources of variable strength equally spaced in the wall along the x-axis (see figure 1) .  
Without loss of generality, we fix the origin to coincide with a source so that the 
position of the nth source is ( X n ,  0) where 

X n = n a ;  n =  . . . -  3 , - 2 , 0 , 1 , 2 , 3  , . . . ,  (2.1) 

where a is the spacing between the sources. The source strengths are taken to be 
spatially periodic so that if we denote the strength of the nth source by Cn(t ) ,  then 

Cn+“t) = Cn(t) ,  (2.2) 

so that there are N sources of different instantaneous strengths per spatial 
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Window S, 

K M :  

FIGURE 1.  Schematic diagram showing the instantaneous position of the equally spaced array of' 
vortices over the wall with sources embedded at x = X, (n = . . . , -2, - 1,0,1,2,. . .) with y = 0. 
The figure depicts the case with N = 3 sources per wavelength. S, is a representative window in the 
spatially periodic array. 

wavelength. Thus, in the absence of any vortices in the flow, the instantaneous 
irrotational velocity a t  a field point z = x+iy, due to the distribution of sources in 
the rigid wall, can be represented by a complex velocity potential w,(z, t ) ,  where 

N-1 m 
w,(z,t) = C. C. ~ C f l ( t ) l n ( z - X f l - d u )  

fl-0 m=-m 

(2.3) 

The induced velocity (u,,v,) at z is then 

u,(x, y, t )  - iv,(x, y, t )  = dw,/dz. (2.4) 
It may be noted that, except a t  x = X, (n = . . . -2 ,1 ,0 ,1 ,2 , .  . .), the induced normal 
velocity is zero at the wall and the mass flux per unit spanwise length due to  the nth 
source is 2Cfl(t). It can be seen from (2.3) that  at any given y ,  the potential is spatially 
( x )  periodic with a wavelength A,, such that A,  is an integral multiple of Nu, that is 

A, = p(Na),  p an integer. (2.5) 

We now suppose that the flow field consists of an infinite linear array of point 
vortices of equal strength K and spacing A supported in a uniform stream lJo over the 
wall. Then the instantaneous complex potential for the irrotational velocity a t  a field 
point z is given by 

+w,(z,t)+li0z+constant. (2.6) 

where zv0 denotes the position of a vortex in the array, the asterisk denotes complex 
conjugate and w, is given by (2.3). 

The expression (2.6) for the velocity potential holds provided that the point 
vortices are maintained as a linear array. However, a point vortex moves with the 
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velocity induced at, tJhe point by external sources; thus the position of tjhe m,th vortex 
is governed by 

where XVP = zv0+pA @ = .. .-2, - 1,0,1,2,  ...). (2.8) 

In  the absence of the source distribution on the plane wall (w, = O) ,  each vortex over 
the wall experiences the same velocity and therefore moves in unison with other 
vortices so that they are maintained as a linear array. This property still holds when 
the source distribution on the wall is present (with w, given by ( 2 . 3 ) ) ,  provided that 

A = A, = p(Na),  p an integer (2.9) 

from (2 .5) ;  that  is, A is an integral multiple of the wavelength associated with the 
source distribution on the wall. It is then only necessary to follow the motion of one 
vortex in the array, zo say, and use (2.8) to determine the position of the other 
vortices. 

Wc choose to  study only the case p = 1 in detail so that the flow field is then 
spatially (x) periodic with wavelength A and for every vortex in the array there are 
Nline sources on the wall. Thus the flow field can be divided into sections or windows 
of length A and the flow need be evaluated in only one such section. 

We choose to  consider the flow in the window S,  defined by 0 < x < A so that, in 
view of (2.  l), the line sources along the wall in X, are a t  ( X n ,  0) n = 0, 1 ,2 ,  , . . , N -  1 ,  
where X, = nA/N. In view of (2.2), the strength of the sources at (Xo,O) and a t  
( X N ,  0) in the adjacent window X, is Co(t). Suppose that a t  a given instant the mth 
vortex in the array is in the window S, at the position zv, = z,. Then it  follows from 
(2.3), (2.6) and (2.9) that the instantaneous complex velocity potential a t  a field point 
z is given by 

where K = 2 x / A ;  the arbitrary constant in (2.6) is here set to  zero. The instantaneous 
velocity (u ,v )  at z is given by 

u(x, y, t )  -it)(%, y ,  t )  = dw/dz. (2.11) 

We obtain the equations governing the position z,(t) ( = x,(t) + iy,(t)) of the vortex in 
the window 8, on substituting (2.4) and (2.8) into (2.7) and using (2.9). Thus after 
evaluating the sum in (2 .7 ) ,  we have for yv > 0, 

K 1 N - l  C',(t) sinKs, dx, = -cothKy,+- 2 + uo, dt 2A A n=O cosh K y ,  - cos Ks, 

dy, - 1 N-l C,(t) sinhKs, 
C. dt A n=O cosh Ky, - cos Ks, ' 

(2.12) 

(2.13) 

where s,(t) = x,(t)-X, = x,(t)-nA/N. (2.14) 

The positions of the vortices in the adjacent windows are given by 

Thus if the inth vortex traverses into an adjacent window, z v k A  gives the position 
of' t.he vortex which has traversed into the window S,. 
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The slip velocity a t  the wall surface is given by 
1 N-1 sin Ky, 

u(x,  t )  = uo +- coshKy,-cosK(x-x,)) +- A fi=o 2 C,(t)cotl&(x-Xn), (2.16) 

the mean value, @, being U , + K / A ;  the last term on the right-hand side has 
singularities at x = X ,  and u is obtained as a Cauchy principal value of the relevant 
integral. 

Equations (2.10)-(2.13) suffice to describe the instantaneous flow field and can be 
used to follow the motion from a given initial position of the vortex in S,  for a 
prescribed source strength variation C,(t) .  The case when the source strength is 
constant in time is briefly considered in the Appendix. However, the case where the 
sources are of variable strength is of interest here and this is pursued in detail in the 
following sections. 

3. Basic features of the flow 
We consider a particular, periodically varying, source strength, 

CJt) = -Coc0s(Ks,+q5); --K € $h < n, (3.1) 
where s,(t) is given by (2.14) and defines the position of the vortex in a window 
relative to the nth source in that window; and where both q5, the phase of the wave 
relative to the vortex, and C,, its amplitude, are held constant. The flow associated 
with this choice of C,(t) corresponds to that over a virtual surface in the form of a 
travelling wave at the wall which maintains its phase relative to the streamwise 
position of the vortex array. Cn(t)  is plotted as a function of n/N in figure 2 for the 
case when there are N = 6 sources in the window, a t  a fixed time t = to.  Four cases 
are shown with the phase set to $h = 0, and x. I n  each, the smooth line joining 
the discrete points defines the virtual surface. With the source strength defined 
according to (3.1), the virtual surface always has the same form relative to the 
instantaneous position of the vortex ; effective] y, the motion at the wall is 'tuned ' or 
locked in to the motion of the vortex. 

The corresponding motion of the vortex array is calculated by integrating (2.12) 
and (2.13) using a fourth-order Runge-Kutta scheme. Results are presented for a 
particular choice of the vortex strength, 

It is shown in the Appendix that when q5 =# +in, the vortices have a non-zero mean 
velocity normal to the wall so that  the motion is not periodic and the vortices drift 
towards or away from the wall. When g5 = +$, the normal velocity has a zero mean 
and the motion is periodic. The mean streamwise velocity is faster or slower than 
that given by (1 .1)  according to  whether q4 = +an or 9 = -in. 

Here, we restrict consideration to the periodic cases corresponding to 9 = 54.. 
However, as discussed in the next section, stable solutions are possible only for 
q5 = -an. We therefore present detailed results for this value of q 5 ;  the differences in 
the vortex paths for given initial conditions and source strength between q5 = kin are 
illustrated in figure 3. 

It may be noted that with the choice (3.1) for C,(t) ,  the system (2.12)-(2.14) is 
autonomous. Further, the right-hand side of (2.12) and (2.13) are continuously 
differentiable with respect to x, and yv > 0. Thus by t h e  existmce and uniqueness 
theorem of differential equations, any initial condition z,(O) = ul, y,(O) = a, gives 
rise to a unique trajectory through the point (a,,a,) so that any two trajectories 

KIA = - Uo. (3.2) 
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(b) 9 = +$I 
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( d )  4 = -$ 
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FIGURE 2. Possible forms, relative to the vortex, of'the virtual surface a t  the wall associated with 
source strength C,(t) given by (3.1) with (a )  5, = 0, ( b )  4 = in, (c) $ = n and ( d )  $ = -in. The figure 
depicts the form of the wave defined by instantaneous strength of sources for the case of N = 6 
sources per wavelength. 
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0 
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FIGURE 3. Contrast between vortex paths corresponding to phase (a) ,  q5 = i n  and ( b )  $ = -in The 
source strength amplitude is eo = 0.2 and N = 2. The solid curves shown are trajectories of the 
vortices in a representative window 8,. 
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FIGURE 4. Vortex paths corresponding to various values of N ,  number of sources per wavelength, and source strength amplitude. 
c0. The curves shown in each part are trajectories of the vortices in a representative window 8,. The direction of the free stream 
is from right to left. Paths marked with letter S indicate stable paths; those left unmarked are unstable. 
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s: ; ol 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Source strength amplitude, eo 

FIGURE 5. Variation of' mean streamwise vortex velocity with source strength amplitude for three 
values of instantaneous vortex height corresponding to position Kxv = A. The streamwise direction 
is along the negative x-axis (see figure 1). 

cannot cross. The values of the pair (xv,yv) for which the right-hand sides of (2.12) 
and (2.13) both vanish are the critical points of the system for which the trajectories 
are degenerate and are just points. For N sources per window in the wall, there are 
N critical points in the window. When q5 = f i n ,  these critical points are centres ; that 
is, trajectories close to the critical points form closed orbits. 

The vortex paths with different discrete source conditions at the wall are shown in 
figure 4 for various initial positions of the vortex array. In all cases shown, the vortex 
in the window is initially positioned at .,/A = 0.5 whilst the initial height of the 
array above the wall is varied. In the chosen window the sources are positioned along 
the wall according to (2.14) at X, = nA/N,  where n = 0, 1, . . . , N -  1 .  Figure 4 shows 
the paths for the number of sources per window, N = 1, 2 ,  3 and 6 ,  and for three 
values of the source amplitude, eo = 0.1, 0.2 and 0.4, where e0 = Con/Ec. The free- 
stream direction is from right to left. When the array is positioned close to the wall, 
the vortices move upstream as indicated earlier. If the array is positioned further out 
from the wall the vortices may move in closed paths. With the initial value of 
X J A  = 0.5 chosen here, closed paths are possible only when there is an odd number N 
of sources per window, that is when each vortex is not initially above a source; this is 
because with N odd, x, /A = 0.5 is midway between two sources. However, when the 
vortex array is initially positioned sufficiently far from the wall, the vortices move 
in the direction of the free stream. In this case, when each vortex periodically 
traverses the length of the window section in time T, then a frequency wo = 2 n / T  is 
implied by the motion. This suggests that C,(t) can alternatively be of the form 

C,(t)  = -Cocos(w, t -2~n/N+q5) ,  

where the sign of the phase 2nn/N ensures that the wave moves in the direction of 
the free stream. This definition of C,(t)  corresponds to a surface that is controlled 
externally rather than one, as given by (3.1), which is 'tuned' or locked in to the flow. 

The mean velocity of the vortex array is given by 0 = A / T  = Awo/2n. It is shown 
in the Appendix that as the source strength eo is increased the vortex array moves 
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with a higher mean speed; figure 5 shows this variation in mean speed with source 
strength for N = 2 as the initial vortex position is altered. 

In  an inviscid model flow of the type considered here, the slip velocity a t  the plane 
surface governs the pressure gradient in the boundary layer a t  the wall surface in the 
corresponding viscous problem. The slip velocity givcn by (2.16) is shown in figure 
6 for a particular case, In this model problem, the slip velocity has singularities a t  
the location of the sources although, with the choice (3.2), its mean value is zero; in 
practice, with finite-size suction slotH, the velocity will have finite peak values in the 
vicinity of the source locations. 

u\ I , . / 
- 2 -  
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I n  general, the presence of coherent vortices near a wall can induce a significant 
viscous response a t  the wall surface. Walker (1978), for example, has evaluated the 
response in the case of a single spanwise eddy in steady motion over a plane surface : 
in a frame of reference moving with the vortex (so that the mean slip velocity at  the 
surface in the associated inviscid problem is - 3K/4nh, where h is the vortex height), 
counter eddies are observed to form at the surface. Similar viscous response is 
observed in a turbulent boundary layer due to  the presence of coherent eddies in its 
outer layer (Smith et al. 1991 ; Falco 1991). In  the present problem, such a response 
has not been determined. In  view of the chosen condition (3.2), the mean velocity 
gradient and the mean pressure gradient in the boundary layer a t  the wall, in the 
corresponding viscous problem, are expected to be small. It is believed that this will 
minimize the unsteady development of the boundary layer of the type suggested by 
Walker. This belief is based on experimental observations, of Uzkan & Reynolds 
(1967) for example, that turbulence production in a boundary layer is inhibited if the 
wall surface beneath the boundary layer is made to move with the mean streamwise 
velocity. It is possible that the presence of local peaks in the pressure gradient 
associated with the source flow may still have significant effects ; however, in 
considering such effects, it must be borne in mind that the pressure peaks are 
transient for the periodically varying source strength. Thus the exact viscous 
response for the present problem remains to be determined. 

E .  Acton and M .  R .  Dhanak 

4. Stability of the linear array of vortices 
We examine the stability of the vortex motion, and hence the associated inviscid 

flow considered in $3, to small two-dimensional disturbances in the flow. It is noted 
that in practice the disturbances present may not be small nor two-dimensional and 
the present investigation needs to be supplemented by a further study if finiteness 
and the three-dimensional nature of the disturbances are both investigated. The 
determination of the stability to small two-dimensional disturbances is however a 
prerequisite for any such study. 

We suppose that each vortex in the array is perturbed from its quasi-steady path 
by plane infinitesimal disturbances which do not bend the vortex lines. Let the 
instantaneous perturbed position of the mth vortex in the array be given by 

where E -+ 1 and zv(t) (=  xv(t) +iyv(t)) satisfies (2.12)-(2.13) for the unperturbed flow. 
The unsteady basic flow is considered to be stable if the perturbations which are 
bounded initially remain bounded for all time. 

On substituting (4.1) into (2.7) we have 

+V,. (4.2) 

Then expanding the right-hand side of (4.2) in terms of e we find that whilst the terms 
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independent of e are satisfied identically in view of (2.12)-(2.13), the terms 
proportional to e give 

where E = 2yv/A. We proceed with the stability analysis following Lamb (1932, p. 
226) : we write z",, = 2,, +is,,, separate the real and imaginary parts of (4.3) and 
look for solutions of the form 

Zvm(t) = Z(t) eim*, g,,(t) = F( t )  eim*; 0 < 1 ~ .  < 2.n. (4.4) 

We find that z, P are given by 

(2, P) = (X(t), Y(t)) exp 

where X ,  Y satisfy 
(4.5) 

- - ( A + ~ T c P - C ) X - ~ R & Y ,  (4.6) = - ( A + ~ ~ P - C ) Y - ~ X Q X ,  --- A2 dY 4 2  dx 
K dt K dt 
__ 

with 

sinh2 nk 1 ' 1 nEsinn@ = -( 1 n:$coshk(n:-$) - n2sinhk$ 
n: (n2+E2)2 2 sinh kn: 

1 (n2 - k 2 )  ein$ 1 $sinh k(n: - $) n cosh k$ 

B = - C  

sinh2 n:k 1 ' C = - Z  = --( - 
2n: (n2+k2)2 2 sinhkn: 

and s, = x , -X , .  For periodic motion of the vortices, determined by (2.12)-(2.13) 
with appropriate choice of C,(t) and U,,, the coefficients of the coupled equations (4.6) 
are periodic with the same period T as that associated with the motion of the 
vortices. Further, the coefficients have no singularities for yz > 0. Thus the nature of 
the solutions t o  (4.6) may be established by Floquet theory (Ince 1956, p. 381). The 
theory determines whether (4.6) admit solutions which grow in time. If they do, then 
the vortex path being considered is not stable. 

Equation (4.6) (together with (2.12)-(2.13)) is integrated over a period with initial 

respectively and given initial values of (xv, y,) using a fourth-order Runge-Kutta 
method; the superscripts are used to distinguish the two solutions. Then the nature 
of any solution to (4.6) is determined by the eigenvalues of the non-singular matrix, 

(X"'(T) X@)(T)) 
Y(1) ( T )  Y(2) ( T )  

D =  

If the two eigenvalues of D are not distinct, the system (4.6) admits a solution which 
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grows, a t  least linearly in time. If the eigenvalues are distinct, any solution of (4.6) 
can be written 

X ( t )  = A o d l t ~ ~ , ( t ) + B , d z t F , z ( t ) ,  Y( t )  = A,dl'G,,(t) +Boe/"2'GP2(t), 

where ii = epsT are the eigenvalues of D, J>%(t) and GJt) are periodic with period T 
and A, and B, are constants. If the real part of either characteristic exponent pi is 
positive, the system (4.6) admits solutions which grow exponentially in time. Thus 
for stability we require that the eigenvalues of the matrix D be distinct and that each 
pi satisfy Re(,ui) < 0. 

Since in (4.6), A ,  P, Q and C are symmetric in $ about $ = n, the stability 
characteristics will be symmetric about 9 = K. Thus it is sufficient to study the case 

The stability characteristics were investigated for the basic vortex paths defined 
by (2.32)-(2.13) with condition (3.2) and source strength C,(t) given by (3.1) with 
phase $ = +_in. No stable solutions were found over the range of parameter space 
considered for q5 = +in. A possible qualitative explanation for this is afforded by the 
illustration in figure 2 ( b ) .  The figure shows the position of the vortex in a window in 
relation to the virtual surface underneath. If the vortex is perturbed upwards 
(downwards) from this position, its streamwise speed will increase (decrease) so that 
the vortex will be over an instantaneous source (sink) which will enhance its upward 
(downward) shift. Thus the perturbations will grow. This does not happen when 
q5 = -in (figure 2 d ) :  a small upward (downward) shift of the vortex from its 
unperturbed position and the subsequent increase (decrease) in its streamwise speed 
imply that the vortex will be over an instantaneous sink (source) which will oppose 
its upward (downward) motion. Thus it is possible that the growth of the 
disturbances is checked for a range of flow parameters so that stable vortex paths 
exist for q5 = -in.. Henceforth, we therefore restrict attention to that case only and 
show that stable vortex paths indeed exist for this case. 

An extensive search revealed that the least stable mode of disturbances is the 
'pairing mode ', which corresponds to $ = n in (4.4). This result is consistent with the 
corresponding result for the array in the absence of the source distribution. It is thus 
only necessary to consider perturbations corresponding to y9 = x in order to 
determine the stability of a vortex path. The parametric results below are based on 
this criterion. 

For the number of sources per window, N =  I ,  2, 3 and 6, the perturbed vortex 
paths corresponding to a range of values of the source strength amplitude C ,  and a 
range of values of initial vortex heights were considered. The initial streamwise 
position of the unperturbed vortex was taken to be x, = $4. The stability boundaries 
are shown in figure 7 (a-d) where the initial vortex height yv(0)/,4 is plotted against 
the source strength eo = nC,/K. I n  the figures, stability refers to neutral stability 
with respect to infinitesimal disturbances. 

Close to the wall, where in their unperturbed state the vortices travel upstream or 
in closed paths, the stability boundaries are difficult to define accurately and are 
tentatively drawn in the figures by enclosing points which correspond to stable 
vortex paths. The boundaries consist of a number of branches enclosing regions of 
stability in the (y,(O)/A,~,)-plane. The branches become less numerous as N is 
increased. 

Further away from the wall, it  is possible to identify the stability boundaries more 
accurately. Typically they consist of two branch curves such that the region between 
the curves corresponds to stable vortex paths. Figure 7 (a )  illustrates the case of one 

O < $ < T t .  



Motion and stability of a vortex array above a pulsed surface 243 

2.01 I 

Stable 0.15L 7 i 
0.2 0.4 0.6 

2.0 -1 

n s 
Q 1.0- 
31- 

Stable 
0.15 

0.2 0.4 0.6 
€0 

0.2 0.4 0.6 

2.0 1 I 

Unstable 

0.2 0.4 0.6 

FIGURE 7. Stability boundaries for periodic flows with N sources per wavelength embedded in the 
wall: (u) N = 1, (b )  N = 2, ( c )  N = 3 and (d )  N = 6. 

source per window (N = 1). This case is different from the others considered in that 
the corresponding virtual surface (of. $3) at the wall is not wavy. The stability 
characteristics are accordingly somewhat different in this case although the stability 
boundaries still consist of two branches, marked respectively A and A .  The 
stable region is enclosed between the two branches. Thus for 0.04 5 eo 5 0.13, and 
y,(O)/A > 0.45/n the range of stable vortex heights increase with co. For 
e0 2 0.13 and y,(O)/A > 0.55/n, for each c0 there are two narrow ranges of stable 
vortex heights, separated by a range of unstable heights. 

Branch A of the stability boundary is a common feature for other values of N also. 
Apparently, the relevant parameter is Nee, the root-mean-square value of the 
instantaneous volume flux at the wall. The left-most point on Branch A corresponds 
to Neo z 0.04. The branch widens out for e o 2  O.O4/N, the width for a given B,, 

increasing with N .  Branch A’ of the stability boundary which is a feature of the 
N = 1 case has no counterpart for N > 1. However, there is a second branch B which 
lies to the right of e0 2 1.44/N and which is completely enclosed by branch A. 
Branch B also widens out for eo 2 1.44/N. 

Figure 7 (b )  depicts the case N = 2 and shows Branch A of the stability boundary. 
The ordinate e0 = 1.44/N lies to the right of the range of e0 shown so that Branch B 
of the stability boundary does not appear in the figure. Thus in the range of eo shown, 
the range of stable vortex heights for yv(0)/A > 0.35/n increases with eo. Note that 
for the initial position x, = $A, there are no closed paths for this case. The feature of 
the stability characteristics represented by Branch B of the boundary is shown for 
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N = 3 and 6 in figures 7 (c) and 7 ( d )  respectively. For 0.04 2 Nco 2 1.44, the range of 
stable vortex heights increases with c0 as for N = 2. For c0 2 1.44, for each c0 there 
are two narrow ranges of vortex heights at which the array is stable. The width of 
the two ranges becomes smaller as eo is increased while the width of the unstable 
region separating the two ranges becomes bigger. 

The stable vortex paths in figure 4 are denoted by ‘S’ while those which are 
unstable are left unmarked. It may be noted that for small values of eo the range of 
stable vortex heights increases with N while for each fixed N ,  the range of stable 
vortex heights increases with eo. This is evident from figure 7 (a-d). When eo is as large 
as 0.4, the stable range still increases with N and co respectively for N d 3. However, 
for N =  6 the stable paths corresponds to two narrow ranges of vortex heights 
separated by a large range of heights for which the vortex paths are unstable. As may 
be seen from figure 7 ( 4 ,  the latter corresponds to the unstable region enclosed by 
Branch B of the stability boundary. It may also be noted from figure 4 that some of 
the closed paths are also stable. 

5. Conclusions 
We have shown that for an array of vortices over a plane surface embedded with 

sources of variable strength, periodic flows are possible if the vortex array spacing is 
an integer multiple of the source array spacing and if the source strength varies 
periodically with a constant phase with respect to the moving array. The 
instantaneous strength of a source varies according to its position along the wall in 
such a way as to define a virtual surface which is in the form of a travelling wave at  
the wall. Typical periodic paths are shown in figure 4 for N = 1, 2, 3 and 6 and for 
three values of the source strength amplitude. For a range of the source strength 
amplitude and array height above the wall, it is shown that periodic flows which are 
stable to small, two-dimensional disturbances are possible. Thus the present model 
suggests that an array of vortices in an inviscid fluid can stably persist over a plane 
surface if a suitable oscillating volume flux is introduced a t  the surface. Stable flows 
have been shown to exist for the case where the mean slip velocity is zero so that the 
characteristics of the flow in the corresponding viscous problem may be significantly 
different from that of a conventional boundary layer, leading to the interesting 
possibility of a considerably reduced viscous response to the presence of the array. 
However, the problem of the viscous response requires further investigation. 

The paper is based on work carried out by the authors while they were a t  
Topexpress Ltd., Cambridge and was partially supported by Rolls Royce plc. 

Appendix. Choice of source strength 

a series form as 
It can be shown that the vortex velocity given by (2.12)-(2.14) can be written in 

where CJ is given by (1.1) and 
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For C,(t) given by (3.2), these become 

+(8,,+82,)e-2Kuvcos (2Kso+q5)+H,+K}, (A 3) 

where 8, = 1 if i = j ,  8, = 0 if i + j ,  

and 

a0 

&(t) = 1+ C e-mKf'vsin((m+2)Ksn+#) 
m = l  

00 

H ,  = e-"KYvcosm(K(m+ l)s0+q5). 
m=2 

m & l = N  

We note that the first term on the right of (A 3) is non-oscillatory and it can be shown 
that for N k 2, the vortex height is of the form 

Ky, = l n ( / 3 - ~ ~ z C o N t c o s ~ ) + G ( t ) ,  (A 4) 

where G(t)  is an oscillatory function with zero mean and is a constant. Thus if 
# + k f n  the vortex height will increase or decrease logarithmically according as 
141 > i7c or 1q51 < and the flow will not be periodic in time. However, if q5 = &in, 
although (A2)  implies that there will be a net increase or decrease in the mean 
streamwise velocity, the flow will be periodic in time. A similar result holds for the 
case N = 1. 

It may be noted that if the source strength does not vary in time and is of the form 

C,(t)  = -$C, cos (K(s, + n / N )  + q5) n = 0 , 1 , 2 ,  . . . , N -  I ,  (A 5) 

then the vortex paths are given by the Im (W,(z)) = constant, where W,(z) is the 
complex potential induced at  z by the source distribution on the wall, by the uniform 
stream and by the image vorticity. W,(z) is given by 

+ ws(z) + U,z+ constant, 

where w,(z) is given by (2.3) with C,(t)  given by (A 6). 
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